Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE This study compared two deep learning architectures—generative adversarial networks (GANs) and convolutional neural networks combined with implicit neural representations (CNN-INRs)—for generating synthetic CT (sCT) images of the spine from biplanar radiographs. The aim of the study was to identify the most robust and clinically viable approach for this potential intraoperative imaging technique. METHODS A spine CT dataset of 216 training and 54 validation cases was used. Digitally reconstructed radiographs (DRRs) served as 2D inputs for training both models under identical conditions for 170 epochs. Evaluation metrics included the Structural Similarity Index Measure (SSIM), peak signal-to-noise ratio (PSNR), and cosine similarity (CS), complemented by qualitative assessments of anatomical fidelity. RESULTS The GAN model achieved a mean SSIM of 0.932 ± 0.015, PSNR of 19.85 ± 1.40 dB, and CS of 0.671 ± 0.177. The CNN-INR model demonstrated a mean SSIM of 0.921 ± 0.015, PSNR of 21.96 ± 1.20 dB, and CS of 0.707 ± 0.114. Statistical analysis revealed significant differences for SSIM (p = 0.001) and PSNR (p < 0.001), while CS differences were not statistically significant (p = 0.667). Qualitative evaluations consistently favored the GAN model, which produced more anatomically detailed and visually realistic sCT images. CONCLUSIONS This study demonstrated the feasibility of generating spine sCT images from biplanar radiographs using GAN and CNN-INR models. While neither model achieved clinical-grade outputs, the GAN architecture showed greater potential for generating anatomically accurate and visually realistic images. These findings highlight the promise of sCT image generation from biplanar radiographs as an innovative approach to reducing radiation exposure and improving imaging accessibility, with GANs emerging as the more promising avenue for further research and clinical integration. https: //thejns.org/doi/abs/10.3171/2025.4.FOCUS25170

Original publication

DOI

10.3171/2025.4.FOCUS25170

Type

Journal article

Journal

Neurosurgical Focus

Publication Date

01/01/2025

Volume

59

Pages

1 - 8